by Pogna, E. A. A., Chumakov, A. I., Ferrante, C., Ramos, M. A. and Scopigno, T.
Abstract:
Fossil amber offers the unique opportunity to investigate an amorphous material that has been exploring its energy landscape for more than 110 million years of natural aging. By applying different X-ray scattering methods to amber before and after annealing the sample to erase its thermal history, we identify a link between the potential energy landscape and the structural and vibrational properties of glasses. We find that hyperaging induces a depletion of the vibrational density of states in the terahertz region, also ruling the sound dispersion and attenuation properties of the corresponding acoustic waves. Critically, this is accompanied by a densification with structural implications different in nature from that caused by hydrostatic compression. Our results, rationalized within the framework of fluctuating elasticity theory, reveal how upon approaching the bottom of the potential energy landscape (9% decrease in the fictive temperature) the elastic matrix becomes increasingly less disordered (6%) and longer-range correlated (22%).
Reference:
Tracking the Connection between Disorder and Energy Landscape in Glasses Using Geologically Hyperaged Amber (Pogna, E. A. A., Chumakov, A. I., Ferrante, C., Ramos, M. A. and Scopigno, T.), In The Journal of Physical Chemistry Letters, volume 10, 2019.
Bibtex Entry:
@article{pogna_tracking_2019, title = {Tracking the {Connection} between {Disorder} and {Energy} {Landscape} in {Glasses} {Using} {Geologically} {Hyperaged} {Amber}}, volume = {10}, issn = {1948-7185}, url = {https://pubs.acs.org/doi/10.1021/acs.jpclett.9b00003}, doi = {10.1021/acs.jpclett.9b00003}, abstract = {Fossil amber offers the unique opportunity to investigate an amorphous material that has been exploring its energy landscape for more than 110 million years of natural aging. By applying different X-ray scattering methods to amber before and after annealing the sample to erase its thermal history, we identify a link between the potential energy landscape and the structural and vibrational properties of glasses. We find that hyperaging induces a depletion of the vibrational density of states in the terahertz region, also ruling the sound dispersion and attenuation properties of the corresponding acoustic waves. Critically, this is accompanied by a densification with structural implications different in nature from that caused by hydrostatic compression. Our results, rationalized within the framework of fluctuating elasticity theory, reveal how upon approaching the bottom of the potential energy landscape (9% decrease in the fictive temperature) the elastic matrix becomes increasingly less disordered (6%) and longer-range correlated (22%).}, language = {en}, number = {3}, urldate = {2021-06-09}, journal = {The Journal of Physical Chemistry Letters}, author = {Pogna, E. A. A. and Chumakov, A. I. and Ferrante, C. and Ramos, M. A. and Scopigno, T.}, month = feb, year = {2019}, note = {No CMAM}, pages = {427--432}, file = {Pogna et al. - 2019 - Tracking the Connection between Disorder and Energ.pdf:E:\Usuarios\Administrator\Zotero\storage\6JL4KMR8\Pogna et al. - 2019 - Tracking the Connection between Disorder and Energ.pdf:application/pdf}, }