by O. Plantevin, R. Gago, L. Vázquez, A. Biermanns and T. H. Metzger
Abstract:
The formation of self-organized nanodot patterns on GaSb(001) targets by ion beam sputtering has been studied in situ with grazing incidence small angle x-ray scattering. The temporal evolution of the patterns at different ion energies (300–1200eV)(300–1200eV)textlessmath display=”inline” overflow=”scroll” altimg=”eq-00001.gif”textgreatertextlessmrowtextgreatertextlessmotextgreater(textless/motextgreatertextlessmntextgreater300textless/mntextgreatertextlessmotextgreater–textless/motextgreatertextlessmntextgreater1200textless/mntextgreatertextlessmspace width=”0.3em”textgreatertextless/mspacetextgreatertextlessmitextgreatereVtextless/mitextgreatertextlessmotextgreater)textless/motextgreatertextless/mrowtextgreatertextless/mathtextgreater has been monitored. The authors evidence a rapid coarsening in the characteristic wavelength until reaching a saturation value that scales with ion energy. The pattern evolves slower toward saturation for the lower ion energy while attaining a higher correlation length (normalized to the wavelength). The pattern time dependence is correlated with the influence of the sputtering rate on the pattern formation.
Reference:
O. Plantevin, R. Gago, L. Vázquez, A. Biermanns and T. H. Metzger, “In situ x-ray scattering study of self-organized nanodot pattern formation on GaSb(001) by ion beam sputtering”, Applied Physics Letters, vol. 91, no. 11, pp. 113105.
Bibtex Entry:
@article{plantevin_situ_2007,
	title = {In situ x-ray scattering study of self-organized nanodot pattern formation on {GaSb}(001) by ion beam sputtering},
	volume = {91},
	issn = {0003-6951},
	url = {http://aip.scitation.org/doi/10.1063/1.2783964},
	doi = {10.1063/1.2783964},
	abstract = {The formation of self-organized nanodot patterns on GaSb(001) targets by ion beam sputtering has been studied in situ with grazing incidence small angle x-ray scattering. The temporal evolution of the patterns at different ion energies (300–1200eV)(300–1200eV){textless}math display="inline" overflow="scroll" altimg="eq-00001.gif"{textgreater}{textless}mrow{textgreater}{textless}mo{textgreater}({textless}/mo{textgreater}{textless}mn{textgreater}300{textless}/mn{textgreater}{textless}mo{textgreater}–{textless}/mo{textgreater}{textless}mn{textgreater}1200{textless}/mn{textgreater}{textless}mspace width="0.3em"{textgreater}{textless}/mspace{textgreater}{textless}mi{textgreater}eV{textless}/mi{textgreater}{textless}mo{textgreater}){textless}/mo{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater} has been monitored. The authors evidence a rapid coarsening in the characteristic wavelength until reaching a saturation value that scales with ion energy. The pattern evolves slower toward saturation for the lower ion energy while attaining a higher correlation length (normalized to the wavelength). The pattern time dependence is correlated with the influence of the sputtering rate on the pattern formation.},
	number = {11},
	urldate = {2017-07-21},
	journal = {Applied Physics Letters},
	author = {Plantevin, O. and Gago, R. and Vázquez, L. and Biermanns, A. and Metzger, T. H.},
	month = sep,
	year = {2007},
	pages = {113105},
	file = {Full Text PDF:E:\cmam_papers\files\643\Plantevin et al. - 2007 - In situ x-ray scattering study of self-organized n.pdf:application/pdf;Full Text PDF:E:\Usuarios\Administrator\Zotero\storage\DEVZBDBM\Plantevin et al. - 2007 - In situ x-ray scattering study of self-organized n.pdf:application/pdf;Snapshot:E:\cmam_papers\files\644\1.html:text/html;Snapshot:E:\Usuarios\Administrator\Zotero\storage\LQCGTBCP\1.html:text/html},
}