by J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes and M. Carrascosa
Abstract:
The formation of buried heavily damaged and amorphous layers by a variety of swift-ion irradiations (F at 22MeV22MeVtextlessmath display=”inline” overflow=”scroll” altimg=”eq-00001.gif”textgreatertextlessmrowtextgreatertextlessmntextgreater22textless/mntextgreatertextlessmspace width=”0.3em”textgreatertextless/mspacetextgreatertextlessmitextgreaterMeVtextless/mitextgreatertextless/mrowtextgreatertextless/mathtextgreater, O at 20MeV20MeVtextlessmath display=”inline” overflow=”scroll” altimg=”eq-00002.gif”textgreatertextlessmrowtextgreatertextlessmntextgreater20textless/mntextgreatertextlessmspace width=”0.3em”textgreatertextless/mspacetextgreatertextlessmitextgreaterMeVtextless/mitextgreatertextless/mrowtextgreatertextless/mathtextgreater, and Mg at 28MeV28MeVtextlessmath display=”inline” overflow=”scroll” altimg=”eq-00003.gif”textgreatertextlessmrowtextgreatertextlessmntextgreater28textless/mntextgreatertextlessmspace width=”0.3em”textgreatertextless/mspacetextgreatertextlessmitextgreaterMeVtextless/mitextgreatertextless/mrowtextgreatertextless/mathtextgreater) on congruent LiNbO3LiNbO3textlessmath display=”inline” overflow=”scroll” altimg=”eq-00004.gif”textgreatertextlessmrowtextgreatertextlessmi mathvariant=”normal”textgreaterLitextless/mitextgreatertextlessmi mathvariant=”normal”textgreaterNbtextless/mitextgreatertextlessmsubtextgreatertextlessmi mathvariant=”normal”textgreaterOtextless/mitextgreatertextlessmntextgreater3textless/mntextgreatertextless/msubtextgreatertextless/mrowtextgreatertextless/mathtextgreater has been investigated. These irradiations assure that the electronic stopping power Se(z)Se(z)textlessmath display=”inline” overflow=”scroll” altimg=”eq-00005.gif”textgreatertextlessmrowtextgreatertextlessmsubtextgreatertextlessmitextgreaterStextless/mitextgreatertextlessmitextgreateretextless/mitextgreatertextless/msubtextgreatertextlessmrowtextgreatertextlessmotextgreater(textless/motextgreatertextlessmitextgreaterztextless/mitextgreatertextlessmotextgreater)textless/motextgreatertextless/mrowtextgreatertextless/mrowtextgreatertextless/mathtextgreater is dominant over the nuclear stopping Sn(z)Sn(z)textlessmath display=”inline” overflow=”scroll” altimg=”eq-00006.gif”textgreatertextlessmrowtextgreatertextlessmsubtextgreatertextlessmitextgreaterStextless/mitextgreatertextlessmitextgreaterntextless/mitextgreatertextless/msubtextgreatertextlessmrowtextgreatertextlessmotextgreater(textless/motextgreatertextlessmitextgreaterztextless/mitextgreatertextlessmotextgreater)textless/motextgreatertextless/mrowtextgreatertextless/mrowtextgreatertextless/mathtextgreater and reaches a maximum value inside the crystal. The structural profile of the irradiated layers has been characterized in detail by a variety of spectroscopic techniques including dark-mode propagation, micro-Raman scattering, second-harmonic generation, and Rutherford backscattering spectroscopy∕channeling. The growth of the damage on increasing irradiation fluence presents two differentiated stages with an abrupt structural transition between them. The heavily damaged layer reached as a final stage is optically isotropic (refractive index n=2.10n=2.10textlessmath display=”inline” overflow=”scroll” altimg=”eq-00007.gif”textgreatertextlessmrowtextgreatertextlessmitextgreaterntextless/mitextgreatertextlessmotextgreater=textless/motextgreatertextlessmntextgreater2.10textless/mntextgreatertextless/mrowtextgreatertextless/mathtextgreater, independent of bombarding ion) and has an amorphous structure. Moreover, it has sharp profiles and its thickness progressively increases with irradiation fluence. The dynamics under irradiation of the amorphous-crystalline boundaries has been associated with a reduction of the effective amorphization threshold due to the defects created by prior irradiation (cumulative damage). The kinetics of the two boundaries of the buried layer is quite different, suggesting that other mechanisms aside from the electronic stopping power should play a role on ion-beam damage.
Reference:
J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics”, Journal of Applied Physics, vol. 101, no. 3, pp. 033512.
Bibtex Entry:
@article{olivares_buried_2007, title = {Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: {Structure} and kinetics}, volume = {101}, issn = {0021-8979}, shorttitle = {Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate}, url = {http://aip.scitation.org/doi/10.1063/1.2434801}, doi = {10.1063/1.2434801}, abstract = {The formation of buried heavily damaged and amorphous layers by a variety of swift-ion irradiations (F at 22MeV22MeV{textless}math display="inline" overflow="scroll" altimg="eq-00001.gif"{textgreater}{textless}mrow{textgreater}{textless}mn{textgreater}22{textless}/mn{textgreater}{textless}mspace width="0.3em"{textgreater}{textless}/mspace{textgreater}{textless}mi{textgreater}MeV{textless}/mi{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater}, O at 20MeV20MeV{textless}math display="inline" overflow="scroll" altimg="eq-00002.gif"{textgreater}{textless}mrow{textgreater}{textless}mn{textgreater}20{textless}/mn{textgreater}{textless}mspace width="0.3em"{textgreater}{textless}/mspace{textgreater}{textless}mi{textgreater}MeV{textless}/mi{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater}, and Mg at 28MeV28MeV{textless}math display="inline" overflow="scroll" altimg="eq-00003.gif"{textgreater}{textless}mrow{textgreater}{textless}mn{textgreater}28{textless}/mn{textgreater}{textless}mspace width="0.3em"{textgreater}{textless}/mspace{textgreater}{textless}mi{textgreater}MeV{textless}/mi{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater}) on congruent LiNbO3LiNbO3{textless}math display="inline" overflow="scroll" altimg="eq-00004.gif"{textgreater}{textless}mrow{textgreater}{textless}mi mathvariant="normal"{textgreater}Li{textless}/mi{textgreater}{textless}mi mathvariant="normal"{textgreater}Nb{textless}/mi{textgreater}{textless}msub{textgreater}{textless}mi mathvariant="normal"{textgreater}O{textless}/mi{textgreater}{textless}mn{textgreater}3{textless}/mn{textgreater}{textless}/msub{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater} has been investigated. These irradiations assure that the electronic stopping power Se(z)Se(z){textless}math display="inline" overflow="scroll" altimg="eq-00005.gif"{textgreater}{textless}mrow{textgreater}{textless}msub{textgreater}{textless}mi{textgreater}S{textless}/mi{textgreater}{textless}mi{textgreater}e{textless}/mi{textgreater}{textless}/msub{textgreater}{textless}mrow{textgreater}{textless}mo{textgreater}({textless}/mo{textgreater}{textless}mi{textgreater}z{textless}/mi{textgreater}{textless}mo{textgreater}){textless}/mo{textgreater}{textless}/mrow{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater} is dominant over the nuclear stopping Sn(z)Sn(z){textless}math display="inline" overflow="scroll" altimg="eq-00006.gif"{textgreater}{textless}mrow{textgreater}{textless}msub{textgreater}{textless}mi{textgreater}S{textless}/mi{textgreater}{textless}mi{textgreater}n{textless}/mi{textgreater}{textless}/msub{textgreater}{textless}mrow{textgreater}{textless}mo{textgreater}({textless}/mo{textgreater}{textless}mi{textgreater}z{textless}/mi{textgreater}{textless}mo{textgreater}){textless}/mo{textgreater}{textless}/mrow{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater} and reaches a maximum value inside the crystal. The structural profile of the irradiated layers has been characterized in detail by a variety of spectroscopic techniques including dark-mode propagation, micro-Raman scattering, second-harmonic generation, and Rutherford backscattering spectroscopy∕channeling. The growth of the damage on increasing irradiation fluence presents two differentiated stages with an abrupt structural transition between them. The heavily damaged layer reached as a final stage is optically isotropic (refractive index n=2.10n=2.10{textless}math display="inline" overflow="scroll" altimg="eq-00007.gif"{textgreater}{textless}mrow{textgreater}{textless}mi{textgreater}n{textless}/mi{textgreater}{textless}mo{textgreater}={textless}/mo{textgreater}{textless}mn{textgreater}2.10{textless}/mn{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater}, independent of bombarding ion) and has an amorphous structure. Moreover, it has sharp profiles and its thickness progressively increases with irradiation fluence. The dynamics under irradiation of the amorphous-crystalline boundaries has been associated with a reduction of the effective amorphization threshold due to the defects created by prior irradiation (cumulative damage). The kinetics of the two boundaries of the buried layer is quite different, suggesting that other mechanisms aside from the electronic stopping power should play a role on ion-beam damage.}, number = {3}, urldate = {2017-07-21}, journal = {Journal of Applied Physics}, author = {Olivares, J. and García-Navarro, A. and García, G. and Agulló-López, F. and Agulló-Rueda, F. and García-Cabañes, A. and Carrascosa, M.}, month = feb, year = {2007}, pages = {033512}, file = {Full Text PDF:E:\cmam_papers\files\634\Olivares et al. - 2007 - Buried amorphous layers by electronic excitation i.pdf:application/pdf;Full Text PDF:E:\Usuarios\Administrator\Zotero\storage\5AUB3TRE\Olivares et al. - 2007 - Buried amorphous layers by electronic excitation i.pdf:application/pdf;Snapshot:E:\cmam_papers\files\635\1.html:text/html;Snapshot:E:\Usuarios\Administrator\Zotero\storage\X4KVMKCQ\1.html:text/html}, }