by F. Agulló-López, G. García and J. Olivares
Abstract:
A thermal-spike model has been applied to characterize the damage structure of the latent tracks generated by high-energy ion irradiations on LiNbO3LiNbO3textlessmath display=”inline” overflow=”scroll” altimg=”eq-00001.gif”textgreatertextlessmrowtextgreatertextlessmi mathvariant=”normal”textgreaterLitextless/mitextgreatertextlessmi mathvariant=”normal”textgreaterNbtextless/mitextgreatertextlessmsubtextgreatertextlessmi mathvariant=”normal”textgreaterOtextless/mitextgreatertextlessmntextgreater3textless/mntextgreatertextless/msubtextgreatertextless/mrowtextgreatertextless/mathtextgreater through electron excitation mechanisms. It applies to ions having electronic stopping powers both below and above the threshold value for lattice amorphization. The model allows to estimate the defect concentrations in the heavily damaged (preamorphized) regions that have not reached the threshold for amorphization. They include the halo and tail surrounding the core of a latent track. The existence of the preamorphized regions accounts for a synergy between successive irradiations and predicts a dependence of the amorphization threshold on previous irradiation fluence. The predicted dependence is in accordance with irradiation experiments using N (4.53MeV)(4.53MeV)textlessmath display=”inline” overflow=”scroll” altimg=”eq-00002.gif”textgreatertextlessmrowtextgreatertextlessmotextgreater(textless/motextgreatertextlessmntextgreater4.53textless/mntextgreatertextlessmspace width=”0.3em”textgreatertextless/mspacetextgreatertextlessmitextgreaterMeVtextless/mitextgreatertextlessmotextgreater)textless/motextgreatertextless/mrowtextgreatertextless/mathtextgreater, O (5.00MeV)(5.00MeV)textlessmath display=”inline” overflow=”scroll” altimg=”eq-00003.gif”textgreatertextlessmrowtextgreatertextlessmotextgreater(textless/motextgreatertextlessmntextgreater5.00textless/mntextgreatertextlessmspace width=”0.3em”textgreatertextless/mspacetextgreatertextlessmitextgreaterMeVtextless/mitextgreatertextlessmotextgreater)textless/motextgreatertextless/mrowtextgreatertextless/mathtextgreater, F (5.13MeV)(5.13MeV)textlessmath display=”inline” overflow=”scroll” altimg=”eq-00004.gif”textgreatertextlessmrowtextgreatertextlessmotextgreater(textless/motextgreatertextlessmntextgreater5.13textless/mntextgreatertextlessmspace width=”0.3em”textgreatertextless/mspacetextgreatertextlessmitextgreaterMeVtextless/mitextgreatertextlessmotextgreater)textless/motextgreatertextless/mrowtextgreatertextless/mathtextgreater, and Si (5 and 7.5MeV7.5MeVtextlessmath display=”inline” overflow=”scroll” altimg=”eq-00005.gif”textgreatertextlessmrowtextgreatertextlessmntextgreater7.5textless/mntextgreatertextlessmspace width=”0.3em”textgreatertextless/mspacetextgreatertextlessmitextgreaterMeVtextless/mitextgreatertextless/mrowtextgreatertextless/mathtextgreater). For electronic stopping powers above the threshold value the model describes the generation of homogeneous amorphous layers and predicts the propagation of the amorphization front with fluence. A theoretical expression, describing this propagation, has been obtained that is in reasonable agreement with silicon irradiation experiments at 5 and 7.5MeV7.5MeVtextlessmath display=”inline” overflow=”scroll” altimg=”eq-00006.gif”textgreatertextlessmrowtextgreatertextlessmntextgreater7.5textless/mntextgreatertextlessmspace width=”0.3em”textgreatertextless/mspacetextgreatertextlessmitextgreaterMeVtextless/mitextgreatertextless/mrowtextgreatertextless/mathtextgreater. The accordance is improved by including in a simple phenomenological way the velocity effect on the threshold. At the highest fluences (or depths) a significant discrepancy appears that may be attributed to the contribution of the nuclear collision damage.
Reference:
F. Agulló-López, G. García and J. Olivares, “Lattice preamorphization by ion irradiation: Fluence dependence of the electronic stopping power threshold for amorphization”, Journal of Applied Physics, vol. 97, no. 9, pp. 093514.
Bibtex Entry:
@article{agullo-lopez_lattice_2005,
	title = {Lattice preamorphization by ion irradiation: {Fluence} dependence of the electronic stopping power threshold for amorphization},
	volume = {97},
	issn = {0021-8979},
	shorttitle = {Lattice preamorphization by ion irradiation},
	url = {http://aip.scitation.org/doi/10.1063/1.1896444},
	doi = {10.1063/1.1896444},
	abstract = {A thermal-spike model has been applied to characterize the damage structure of the latent tracks generated by high-energy ion irradiations on LiNbO3LiNbO3{textless}math display="inline" overflow="scroll" altimg="eq-00001.gif"{textgreater}{textless}mrow{textgreater}{textless}mi mathvariant="normal"{textgreater}Li{textless}/mi{textgreater}{textless}mi mathvariant="normal"{textgreater}Nb{textless}/mi{textgreater}{textless}msub{textgreater}{textless}mi mathvariant="normal"{textgreater}O{textless}/mi{textgreater}{textless}mn{textgreater}3{textless}/mn{textgreater}{textless}/msub{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater} through electron excitation mechanisms. It applies to ions having electronic stopping powers both below and above the threshold value for lattice amorphization. The model allows to estimate the defect concentrations in the heavily damaged (preamorphized) regions that have not reached the threshold for amorphization. They include the halo and tail surrounding the core of a latent track. The existence of the preamorphized regions accounts for a synergy between successive irradiations and predicts a dependence of the amorphization threshold on previous irradiation fluence. The predicted dependence is in accordance with irradiation experiments using N (4.53MeV)(4.53MeV){textless}math display="inline" overflow="scroll" altimg="eq-00002.gif"{textgreater}{textless}mrow{textgreater}{textless}mo{textgreater}({textless}/mo{textgreater}{textless}mn{textgreater}4.53{textless}/mn{textgreater}{textless}mspace width="0.3em"{textgreater}{textless}/mspace{textgreater}{textless}mi{textgreater}MeV{textless}/mi{textgreater}{textless}mo{textgreater}){textless}/mo{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater}, O (5.00MeV)(5.00MeV){textless}math display="inline" overflow="scroll" altimg="eq-00003.gif"{textgreater}{textless}mrow{textgreater}{textless}mo{textgreater}({textless}/mo{textgreater}{textless}mn{textgreater}5.00{textless}/mn{textgreater}{textless}mspace width="0.3em"{textgreater}{textless}/mspace{textgreater}{textless}mi{textgreater}MeV{textless}/mi{textgreater}{textless}mo{textgreater}){textless}/mo{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater}, F (5.13MeV)(5.13MeV){textless}math display="inline" overflow="scroll" altimg="eq-00004.gif"{textgreater}{textless}mrow{textgreater}{textless}mo{textgreater}({textless}/mo{textgreater}{textless}mn{textgreater}5.13{textless}/mn{textgreater}{textless}mspace width="0.3em"{textgreater}{textless}/mspace{textgreater}{textless}mi{textgreater}MeV{textless}/mi{textgreater}{textless}mo{textgreater}){textless}/mo{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater}, and Si (5 and 7.5MeV7.5MeV{textless}math display="inline" overflow="scroll" altimg="eq-00005.gif"{textgreater}{textless}mrow{textgreater}{textless}mn{textgreater}7.5{textless}/mn{textgreater}{textless}mspace width="0.3em"{textgreater}{textless}/mspace{textgreater}{textless}mi{textgreater}MeV{textless}/mi{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater}). For electronic stopping powers above the threshold value the model describes the generation of homogeneous amorphous layers and predicts the propagation of the amorphization front with fluence. A theoretical expression, describing this propagation, has been obtained that is in reasonable agreement with silicon irradiation experiments at 5 and 7.5MeV7.5MeV{textless}math display="inline" overflow="scroll" altimg="eq-00006.gif"{textgreater}{textless}mrow{textgreater}{textless}mn{textgreater}7.5{textless}/mn{textgreater}{textless}mspace width="0.3em"{textgreater}{textless}/mspace{textgreater}{textless}mi{textgreater}MeV{textless}/mi{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater}. The accordance is improved by including in a simple phenomenological way the velocity effect on the threshold. At the highest fluences (or depths) a significant discrepancy appears that may be attributed to the contribution of the nuclear collision damage.},
	number = {9},
	urldate = {2017-07-21},
	journal = {Journal of Applied Physics},
	author = {Agulló-López, F. and García, G. and Olivares, J.},
	month = apr,
	year = {2005},
	pages = {093514},
	file = {Full Text PDF:E:\cmam_papers\files\423\Agulló-López et al. - 2005 - Lattice preamorphization by ion irradiation Fluen.pdf:application/pdf;Full Text PDF:E:\Usuarios\Administrator\Zotero\storage\JTMM59Y9\Agulló-López et al. - 2005 - Lattice preamorphization by ion irradiation Fluen.pdf:application/pdf;Snapshot:E:\cmam_papers\files\424\1.html:text/html;Snapshot:E:\Usuarios\Administrator\Zotero\storage\C9HS935F\1.html:text/html},
}