by G. Abrasonis, R. Gago, I. Jimenez, U. Kreissig, A. Kolitsch and W. Möller
Abstract:
Carbon (C) and carbon nitride (CNx)(CNx)textlessmath display=”inline” overflow=”scroll” altimg=”eq-00001.gif”textgreatertextlessmrowtextgreatertextlessmotextgreater(textless/motextgreatertextlessmsubtextgreatertextlessmitextgreaterCNtextless/mitextgreatertextlessmitextgreaterxtextless/mitextgreatertextless/msubtextgreatertextlessmotextgreater)textless/motextgreatertextless/mrowtextgreatertextless/mathtextgreater films were grown on Si(100) substrates by direct ion-beam sputtering (IBS) of a carbon target at different substrate temperatures (room temperature-450 °C) and Ar∕N2Ar∕N2textlessmath display=”inline” overflow=”scroll” altimg=”eq-00002.gif”textgreatertextlessmrowtextgreatertextlessmitextgreaterArtextless/mitextgreatertextlessmotextgreater∕textless/motextgreatertextlessmsubtextgreatertextlessmi mathvariant=”normal”textgreaterNtextless/mitextgreatertextlessmntextgreater2textless/mntextgreatertextless/msubtextgreatertextless/mrowtextgreatertextless/mathtextgreater sputtering gas mixtures. Additionally, the effect of concurrent nitrogen-ion assistance during the growth of CNxCNxtextlessmath display=”inline” overflow=”scroll” altimg=”eq-00003.gif”textgreatertextlessmrowtextgreatertextlessmsubtextgreatertextlessmitextgreaterCNtextless/mitextgreatertextlessmitextgreaterxtextless/mitextgreatertextless/msubtextgreatertextless/mrowtextgreatertextless/mathtextgreater films by IBS was also investigated. The samples were analyzed by elastic recoil detection analysis (ERDA) and xxtextlessmath display=”inline” overflow=”scroll” altimg=”eq-00004.gif”textgreatertextlessmitextgreaterxtextless/mitextgreatertextless/mathtextgreater-ray absorption near-edge spectroscopy (XANES). The ERDA results showed that significant nitrogen amount (up to 20 at. %) was incorporated in the films, without any other nitrogen source but the N2N2textlessmath display=”inline” overflow=”scroll” altimg=”eq-00005.gif”textgreatertextlessmrowtextgreatertextlessmsubtextgreatertextlessmi mathvariant=”normal”textgreaterNtextless/mitextgreatertextlessmntextgreater2textless/mntextgreatertextless/msubtextgreatertextless/mrowtextgreatertextless/mathtextgreater-containing sputtering gas. The nitrogen concentration is proportional to the N2N2textlessmath display=”inline” overflow=”scroll” altimg=”eq-00006.gif”textgreatertextlessmrowtextgreatertextlessmsubtextgreatertextlessmi mathvariant=”normal”textgreaterNtextless/mitextgreatertextlessmntextgreater2textless/mntextgreatertextless/msubtextgreatertextless/mrowtextgreatertextless/mathtextgreater content in the sputtering beam and no saturation limit is reached under the present working conditions. The film areal density derived from ERDA revealed a decrease in the amount of deposited material at increasing growth temperature, with a correlation between the C and N losses. The XANES results indicate that N atoms are efficiently incorporated into the carbon network and can be found in different bonding environments, such as pyridinelike, nitrilelike, graphitelike, and embedded N2N2textlessmath display=”inline” overflow=”scroll” altimg=”eq-00007.gif”textgreatertextlessmrowtextgreatertextlessmsubtextgreatertextlessmi mathvariant=”normal”textgreaterNtextless/mitextgreatertextlessmntextgreater2textless/mntextgreatertextless/msubtextgreatertextless/mrowtextgreatertextless/mathtextgreater molecules. The contribution of molecular and pyridinelike nitrogen decreases when the temperature increases while the contribution of the nitrilelike nitrogen increases. The concurrent nitrogen ion assistance resulted in the significant increase of the nitrogen content in the film but it induced a further reduction of the deposited material. Additionally, the assisting ions inhibited the formation of the nitrilelike configurations while promoting nitrogen environments in graphitelike positions. The nitrogen incorporation and release mechanisms are discussed in terms of film growth precursors, ion bombardment effects, and chemical sputtering.
Reference:
G. Abrasonis, R. Gago, I. Jimenez, U. Kreissig, A. Kolitsch and W. Möller, “Nitrogen incorporation in carbon nitride films produced by direct and dual ion-beam sputtering”, Journal of Applied Physics, vol. 98, no. 7, pp. 074907.
Bibtex Entry:
@article{abrasonis_nitrogen_2005, title = {Nitrogen incorporation in carbon nitride films produced by direct and dual ion-beam sputtering}, volume = {98}, issn = {0021-8979}, url = {http://aip.scitation.org/doi/10.1063/1.2081112}, doi = {10.1063/1.2081112}, abstract = {Carbon (C) and carbon nitride (CNx)(CNx){textless}math display="inline" overflow="scroll" altimg="eq-00001.gif"{textgreater}{textless}mrow{textgreater}{textless}mo{textgreater}({textless}/mo{textgreater}{textless}msub{textgreater}{textless}mi{textgreater}CN{textless}/mi{textgreater}{textless}mi{textgreater}x{textless}/mi{textgreater}{textless}/msub{textgreater}{textless}mo{textgreater}){textless}/mo{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater} films were grown on Si(100) substrates by direct ion-beam sputtering (IBS) of a carbon target at different substrate temperatures (room temperature-450 °C) and Ar∕N2Ar∕N2{textless}math display="inline" overflow="scroll" altimg="eq-00002.gif"{textgreater}{textless}mrow{textgreater}{textless}mi{textgreater}Ar{textless}/mi{textgreater}{textless}mo{textgreater}∕{textless}/mo{textgreater}{textless}msub{textgreater}{textless}mi mathvariant="normal"{textgreater}N{textless}/mi{textgreater}{textless}mn{textgreater}2{textless}/mn{textgreater}{textless}/msub{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater} sputtering gas mixtures. Additionally, the effect of concurrent nitrogen-ion assistance during the growth of CNxCNx{textless}math display="inline" overflow="scroll" altimg="eq-00003.gif"{textgreater}{textless}mrow{textgreater}{textless}msub{textgreater}{textless}mi{textgreater}CN{textless}/mi{textgreater}{textless}mi{textgreater}x{textless}/mi{textgreater}{textless}/msub{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater} films by IBS was also investigated. The samples were analyzed by elastic recoil detection analysis (ERDA) and xx{textless}math display="inline" overflow="scroll" altimg="eq-00004.gif"{textgreater}{textless}mi{textgreater}x{textless}/mi{textgreater}{textless}/math{textgreater}-ray absorption near-edge spectroscopy (XANES). The ERDA results showed that significant nitrogen amount (up to 20 at. %) was incorporated in the films, without any other nitrogen source but the N2N2{textless}math display="inline" overflow="scroll" altimg="eq-00005.gif"{textgreater}{textless}mrow{textgreater}{textless}msub{textgreater}{textless}mi mathvariant="normal"{textgreater}N{textless}/mi{textgreater}{textless}mn{textgreater}2{textless}/mn{textgreater}{textless}/msub{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater}-containing sputtering gas. The nitrogen concentration is proportional to the N2N2{textless}math display="inline" overflow="scroll" altimg="eq-00006.gif"{textgreater}{textless}mrow{textgreater}{textless}msub{textgreater}{textless}mi mathvariant="normal"{textgreater}N{textless}/mi{textgreater}{textless}mn{textgreater}2{textless}/mn{textgreater}{textless}/msub{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater} content in the sputtering beam and no saturation limit is reached under the present working conditions. The film areal density derived from ERDA revealed a decrease in the amount of deposited material at increasing growth temperature, with a correlation between the C and N losses. The XANES results indicate that N atoms are efficiently incorporated into the carbon network and can be found in different bonding environments, such as pyridinelike, nitrilelike, graphitelike, and embedded N2N2{textless}math display="inline" overflow="scroll" altimg="eq-00007.gif"{textgreater}{textless}mrow{textgreater}{textless}msub{textgreater}{textless}mi mathvariant="normal"{textgreater}N{textless}/mi{textgreater}{textless}mn{textgreater}2{textless}/mn{textgreater}{textless}/msub{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater} molecules. The contribution of molecular and pyridinelike nitrogen decreases when the temperature increases while the contribution of the nitrilelike nitrogen increases. The concurrent nitrogen ion assistance resulted in the significant increase of the nitrogen content in the film but it induced a further reduction of the deposited material. Additionally, the assisting ions inhibited the formation of the nitrilelike configurations while promoting nitrogen environments in graphitelike positions. The nitrogen incorporation and release mechanisms are discussed in terms of film growth precursors, ion bombardment effects, and chemical sputtering.}, number = {7}, urldate = {2017-07-18}, journal = {Journal of Applied Physics}, author = {Abrasonis, G. and Gago, R. and Jimenez, I. and Kreissig, U. and Kolitsch, A. and Möller, W.}, month = oct, year = {2005}, pages = {074907}, file = {Full Text PDF:E:\cmam_papers\files\398\Abrasonis et al. - 2005 - Nitrogen incorporation in carbon nitride films pro.pdf:application/pdf;Full Text PDF:E:\Usuarios\Administrator\Zotero\storage\Q5XIQ9IE\Abrasonis et al. - 2005 - Nitrogen incorporation in carbon nitride films pro.pdf:application/pdf;Snapshot:E:\cmam_papers\files\399\1.html:text/html;Snapshot:E:\Usuarios\Administrator\Zotero\storage\ICDS2KHM\1.html:text/html}, }