by M. Camero, J. G. Buijnsters, C. Gómez-Aleixandre, R. Gago, I. Caretti and I. Jiménez
Abstract:
This work describes the composition and bonding structure of hydrogenated carbon nitride (a-CNx:H)(a-CNx:H)textlessmath baseline=”-12.5″ overflow=”scroll” altimg=”eq-00001.gif”textgreatertextlessmrowtextgreatertextlessmrowtextgreatertextlessmotextgreater(textless/motextgreatertextlessmrowtextgreatertextlessmitextgreateratextless/mitextgreatertextlessmsubtextgreatertextlessmrowtextgreatertextlessmtexttextgreater-CNtextless/mtexttextgreatertextless/mrowtextgreatertextlessmitextgreaterxtextless/mitextgreatertextless/msubtextgreatertextlessmotextgreater:textless/motextgreatertextlessmtexttextgreaterHtextless/mtexttextgreatertextless/mrowtextgreatertextlessmotextgreater)textless/motextgreatertextless/mrowtextgreatertextless/mrowtextgreatertextless/mathtextgreater films synthesized by electron cyclotron resonance chemical vapor deposition using as precursor gases argon, methane, and nitrogen. The composition of the films was derived from Rutherford backscattering and elastic recoil detection analysis and the bonding structure was examined by infrared (IR) spectroscopy and x-ray absorption near edge spectroscopy (XANES). By varying the nitrogen to methane ratio in the applied gas mixture, polymeric a-CNx:Ha-CNx:Htextlessmath baseline=”-5.5″ overflow=”scroll” altimg=”eq-00002.gif”textgreatertextlessmrowtextgreatertextlessmitextgreateratextless/mitextgreatertextlessmsubtextgreatertextlessmrowtextgreatertextlessmtexttextgreater-CNtextless/mtexttextgreatertextless/mrowtextgreatertextlessmitextgreaterxtextless/mitextgreatertextless/msubtextgreatertextlessmotextgreater:textless/motextgreatertextlessmtexttextgreaterHtextless/mtexttextgreatertextless/mrowtextgreatertextless/mathtextgreater films with N/C contents varying from 0.06 to 0.49 were obtained. Remarkably, the H content of the films (∼40 at. %)(∼40 at. %)textlessmath baseline=”-12.5″ overflow=”scroll” altimg=”eq-00003.gif”textgreatertextlessmrowtextgreatertextlessmrowtextgreatertextlessmotextgreater(textless/motextgreatertextlessmrowtextgreatertextlessmotextgreater∼textless/motextgreatertextlessmntextgreater40textless/mntextgreatertextlessmtexttextgreater textless/mtexttextgreatertextlessmtexttextgreaterattextless/mtexttextgreatertextlessmotextgreater.textless/motextgreatertextlessmtexttextgreater textless/mtexttextgreatertextlessmitextgreater%textless/mitextgreatertextless/mrowtextgreatertextlessmotextgreater)textless/motextgreatertextless/mrowtextgreatertextless/mrowtextgreatertextless/mathtextgreater was rather unaffected by the nitrogenation process. The different bonding states as detected in the measured XANES C(1s)C(1s)textlessmath baseline=”-12.5″ overflow=”scroll” altimg=”eq-00004.gif”textgreatertextlessmrowtextgreatertextlessmtexttextgreaterCtextless/mtexttextgreatertextlessmrowtextgreatertextlessmotextgreater(textless/motextgreatertextlessmrowtextgreatertextlessmntextgreater1textless/mntextgreatertextlessmitextgreaterstextless/mitextgreatertextless/mrowtextgreatertextlessmotextgreater)textless/motextgreatertextless/mrowtextgreatertextless/mrowtextgreatertextless/mathtextgreater and N(1s)N(1s)textlessmath baseline=”-12.5″ overflow=”scroll” altimg=”eq-00005.gif”textgreatertextlessmrowtextgreatertextlessmtexttextgreaterNtextless/mtexttextgreatertextlessmrowtextgreatertextlessmotextgreater(textless/motextgreatertextlessmrowtextgreatertextlessmntextgreater1textless/mntextgreatertextlessmitextgreaterstextless/mitextgreatertextless/mrowtextgreatertextlessmotextgreater)textless/motextgreatertextless/mrowtextgreatertextless/mrowtextgreatertextless/mathtextgreater spectra have been correlated with those of a large number of reference samples. The XANES and IR spectroscopy results indicate that N atoms are efficiently incorporated into the amorphous carbon network and can be found in different bonding environments, such as pyridinelike, graphitelike, nitrilelike, and amino groups. The nitrogenation of the films results in the formation of N-H bonding environments at the cost of C-H structures. Also, the insertion of N induces a higher fraction of double bonds in the structure at the expense of the linear polymerlike chains, hence resulting in a more cross-linked solid. The formation of double bonds takes place through complex C=NC=Ntextlessmath baseline=”-0.5″ overflow=”scroll” altimg=”eq-00006.gif”textgreatertextlessmrowtextgreatertextlessmtexttextgreaterCtextless/mtexttextgreatertextlessmotextgreater=textless/motextgreatertextlessmtexttextgreaterNtextless/mtexttextgreatertextless/mrowtextgreatertextless/mathtextgreater structures and not by formation of graphitic aromatic rings. Also, the mechanical and tribological properties (hardness, friction, and wear) of the films have been studied as a function of the nitrogen content. Despite the major modifications in the bonding structure with nitrogen uptake, no significant changes in these properties are observed.
Reference:
M. Camero, J. G. Buijnsters, C. Gómez-Aleixandre, R. Gago, I. Caretti and I. Jiménez, “The effect of nitrogen incorporation on the bonding structure of hydrogenated carbon nitride films”, Journal of Applied Physics, vol. 101, no. 6, pp. 063515.
Bibtex Entry:
@article{camero_effect_2007, title = {The effect of nitrogen incorporation on the bonding structure of hydrogenated carbon nitride films}, volume = {101}, issn = {0021-8979}, url = {http://aip.scitation.org/doi/10.1063/1.2712142}, doi = {10.1063/1.2712142}, abstract = {This work describes the composition and bonding structure of hydrogenated carbon nitride (a-CNx:H)(a-CNx:H){textless}math baseline="-12.5" overflow="scroll" altimg="eq-00001.gif"{textgreater}{textless}mrow{textgreater}{textless}mrow{textgreater}{textless}mo{textgreater}({textless}/mo{textgreater}{textless}mrow{textgreater}{textless}mi{textgreater}a{textless}/mi{textgreater}{textless}msub{textgreater}{textless}mrow{textgreater}{textless}mtext{textgreater}-CN{textless}/mtext{textgreater}{textless}/mrow{textgreater}{textless}mi{textgreater}x{textless}/mi{textgreater}{textless}/msub{textgreater}{textless}mo{textgreater}:{textless}/mo{textgreater}{textless}mtext{textgreater}H{textless}/mtext{textgreater}{textless}/mrow{textgreater}{textless}mo{textgreater}){textless}/mo{textgreater}{textless}/mrow{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater} films synthesized by electron cyclotron resonance chemical vapor deposition using as precursor gases argon, methane, and nitrogen. The composition of the films was derived from Rutherford backscattering and elastic recoil detection analysis and the bonding structure was examined by infrared (IR) spectroscopy and x-ray absorption near edge spectroscopy (XANES). By varying the nitrogen to methane ratio in the applied gas mixture, polymeric a-CNx:Ha-CNx:H{textless}math baseline="-5.5" overflow="scroll" altimg="eq-00002.gif"{textgreater}{textless}mrow{textgreater}{textless}mi{textgreater}a{textless}/mi{textgreater}{textless}msub{textgreater}{textless}mrow{textgreater}{textless}mtext{textgreater}-CN{textless}/mtext{textgreater}{textless}/mrow{textgreater}{textless}mi{textgreater}x{textless}/mi{textgreater}{textless}/msub{textgreater}{textless}mo{textgreater}:{textless}/mo{textgreater}{textless}mtext{textgreater}H{textless}/mtext{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater} films with N/C contents varying from 0.06 to 0.49 were obtained. Remarkably, the H content of the films (∼40 at. %)(∼40 at. %){textless}math baseline="-12.5" overflow="scroll" altimg="eq-00003.gif"{textgreater}{textless}mrow{textgreater}{textless}mrow{textgreater}{textless}mo{textgreater}({textless}/mo{textgreater}{textless}mrow{textgreater}{textless}mo{textgreater}∼{textless}/mo{textgreater}{textless}mn{textgreater}40{textless}/mn{textgreater}{textless}mtext{textgreater} {textless}/mtext{textgreater}{textless}mtext{textgreater}at{textless}/mtext{textgreater}{textless}mo{textgreater}.{textless}/mo{textgreater}{textless}mtext{textgreater} {textless}/mtext{textgreater}{textless}mi{textgreater}%{textless}/mi{textgreater}{textless}/mrow{textgreater}{textless}mo{textgreater}){textless}/mo{textgreater}{textless}/mrow{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater} was rather unaffected by the nitrogenation process. The different bonding states as detected in the measured XANES C(1s)C(1s){textless}math baseline="-12.5" overflow="scroll" altimg="eq-00004.gif"{textgreater}{textless}mrow{textgreater}{textless}mtext{textgreater}C{textless}/mtext{textgreater}{textless}mrow{textgreater}{textless}mo{textgreater}({textless}/mo{textgreater}{textless}mrow{textgreater}{textless}mn{textgreater}1{textless}/mn{textgreater}{textless}mi{textgreater}s{textless}/mi{textgreater}{textless}/mrow{textgreater}{textless}mo{textgreater}){textless}/mo{textgreater}{textless}/mrow{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater} and N(1s)N(1s){textless}math baseline="-12.5" overflow="scroll" altimg="eq-00005.gif"{textgreater}{textless}mrow{textgreater}{textless}mtext{textgreater}N{textless}/mtext{textgreater}{textless}mrow{textgreater}{textless}mo{textgreater}({textless}/mo{textgreater}{textless}mrow{textgreater}{textless}mn{textgreater}1{textless}/mn{textgreater}{textless}mi{textgreater}s{textless}/mi{textgreater}{textless}/mrow{textgreater}{textless}mo{textgreater}){textless}/mo{textgreater}{textless}/mrow{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater} spectra have been correlated with those of a large number of reference samples. The XANES and IR spectroscopy results indicate that N atoms are efficiently incorporated into the amorphous carbon network and can be found in different bonding environments, such as pyridinelike, graphitelike, nitrilelike, and amino groups. The nitrogenation of the films results in the formation of N-H bonding environments at the cost of C-H structures. Also, the insertion of N induces a higher fraction of double bonds in the structure at the expense of the linear polymerlike chains, hence resulting in a more cross-linked solid. The formation of double bonds takes place through complex C=NC=N{textless}math baseline="-0.5" overflow="scroll" altimg="eq-00006.gif"{textgreater}{textless}mrow{textgreater}{textless}mtext{textgreater}C{textless}/mtext{textgreater}{textless}mo{textgreater}={textless}/mo{textgreater}{textless}mtext{textgreater}N{textless}/mtext{textgreater}{textless}/mrow{textgreater}{textless}/math{textgreater} structures and not by formation of graphitic aromatic rings. Also, the mechanical and tribological properties (hardness, friction, and wear) of the films have been studied as a function of the nitrogen content. Despite the major modifications in the bonding structure with nitrogen uptake, no significant changes in these properties are observed.}, number = {6}, urldate = {2017-07-21}, journal = {Journal of Applied Physics}, author = {Camero, M. and Buijnsters, J. G. and Gómez-Aleixandre, C. and Gago, R. and Caretti, I. and Jiménez, I.}, month = mar, year = {2007}, pages = {063515}, file = {Full Text PDF:E:\cmam_papers\files\593\Camero et al. - 2007 - The effect of nitrogen incorporation on the bondin.pdf:application/pdf;Full Text PDF:E:\Usuarios\Administrator\Zotero\storage\R495BQL6\Camero et al. - 2007 - The effect of nitrogen incorporation on the bondin.pdf:application/pdf;Snapshot:E:\cmam_papers\files\594\1.html:text/html;Snapshot:E:\Usuarios\Administrator\Zotero\storage\QC9XU6CB\1.html:text/html}, }