<table>
<thead>
<tr>
<th>Date</th>
<th>Day Shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-Jan-19</td>
<td>Run 10:00-13:00, 13:00-16:00, 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>Beam H 2 MeV, B 8 MeV, He 2 MeV, He 4.3 MeV</td>
</tr>
<tr>
<td></td>
<td>Experiment code 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>Run 10:00-13:00, 13:00-16:00, 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>Beam H 2 MeV, B 8 MeV, He 2 MeV, He 4.3 MeV</td>
</tr>
<tr>
<td></td>
<td>Experiment code 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>User IuB</td>
</tr>
<tr>
<td>8-Jan-19</td>
<td>Run 10:00-13:00, 13:00-16:00, 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>Beam H 2 MeV, B 8 MeV, He 2 MeV, He 4.3 MeV</td>
</tr>
<tr>
<td></td>
<td>Experiment code 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>Run 10:00-13:00, 13:00-16:00, 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>Beam H 2 MeV, B 8 MeV, He 2 MeV, He 4.3 MeV</td>
</tr>
<tr>
<td></td>
<td>Experiment code 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>User IuB</td>
</tr>
<tr>
<td>9-Jan-19</td>
<td>Run 10:00-13:00, 13:00-16:00, 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>Beam H 2 MeV, B 8 MeV, He 2 MeV, He 4.3 MeV</td>
</tr>
<tr>
<td></td>
<td>Experiment code 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>Run 10:00-13:00, 13:00-16:00, 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>Beam H 2 MeV, B 8 MeV, He 2 MeV, He 4.3 MeV</td>
</tr>
<tr>
<td></td>
<td>Experiment code 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>User IuB</td>
</tr>
<tr>
<td>10-Jan-19</td>
<td>Run 10:00-13:00, 13:00-16:00, 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>Beam H 2 MeV, B 8 MeV, He 2 MeV, He 4.3 MeV</td>
</tr>
<tr>
<td></td>
<td>Experiment code 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>Run 10:00-13:00, 13:00-16:00, 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>Beam H 2 MeV, B 8 MeV, He 2 MeV, He 4.3 MeV</td>
</tr>
<tr>
<td></td>
<td>Experiment code 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>User IuB</td>
</tr>
<tr>
<td>11-Jan-19</td>
<td>Run 10:00-13:00, 13:00-16:00, 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>Beam H 2 MeV, B 8 MeV, He 2 MeV, He 4.3 MeV</td>
</tr>
<tr>
<td></td>
<td>Experiment code 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>Run 10:00-13:00, 13:00-16:00, 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>Beam H 2 MeV, B 8 MeV, He 2 MeV, He 4.3 MeV</td>
</tr>
<tr>
<td></td>
<td>Experiment code 17:00-20:00, 21:00-07:00</td>
</tr>
<tr>
<td></td>
<td>User IuB</td>
</tr>
</tbody>
</table>

Beam time allocation

Printer friendly version: https://www.cmam.uam.es/beamtime/beamtime_next.pdf

12/18/2018
<table>
<thead>
<tr>
<th>Day Shift</th>
<th>Run</th>
<th>Beam</th>
<th>Experiment code</th>
<th>Beamline</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-Feb-19</td>
<td>10:00-13:00</td>
<td>Br 40 MeV</td>
<td>STD 005/19</td>
<td>MDY</td>
<td>MDY</td>
</tr>
<tr>
<td>12-Feb-19</td>
<td>10:00-13:00</td>
<td>Br 40 MeV</td>
<td></td>
<td>MDY</td>
<td>MDY</td>
</tr>
<tr>
<td>13-Feb-19</td>
<td>10:00-13:00</td>
<td>H 2 MeV</td>
<td></td>
<td>MDY</td>
<td>MDY</td>
</tr>
<tr>
<td>14-Feb-19</td>
<td>10:00-13:00</td>
<td>Fe 4 MeV</td>
<td></td>
<td>MRB</td>
<td>MRB</td>
</tr>
<tr>
<td>15-Feb-19</td>
<td>10:00-13:00</td>
<td>H 2 MeV</td>
<td></td>
<td>MDY</td>
<td>MDY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Night Shift</th>
<th>Run</th>
<th>Beam</th>
<th>Experiment code</th>
<th>Beamline</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-Feb-19</td>
<td>17:00-20:00</td>
<td>Br 40 MeV</td>
<td>STD 005/19</td>
<td>MDY</td>
<td>MDY</td>
</tr>
<tr>
<td>12-Feb-19</td>
<td>17:00-20:00</td>
<td>H 2 MeV</td>
<td></td>
<td>MDY</td>
<td>MDY</td>
</tr>
<tr>
<td>13-Feb-19</td>
<td>17:00-20:00</td>
<td>Fe 4 MeV</td>
<td></td>
<td>MRB</td>
<td>MRB</td>
</tr>
<tr>
<td>14-Feb-19</td>
<td>17:00-20:00</td>
<td>Fe 4 MeV</td>
<td></td>
<td>MRB</td>
<td>MRB</td>
</tr>
<tr>
<td>15-Feb-19</td>
<td>17:00-20:00</td>
<td>Fe 4 MeV</td>
<td></td>
<td>MDY</td>
<td>MDY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day Shift</th>
<th>Run</th>
<th>Beam</th>
<th>Experiment code</th>
<th>Beamline</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-Feb-19</td>
<td>10:00-13:00</td>
<td>Fe 6 MeV</td>
<td>IMP001/19</td>
<td>IMP</td>
<td>IMP</td>
</tr>
<tr>
<td>19-Feb-19</td>
<td>10:00-13:00</td>
<td>Fe 8 MeV</td>
<td>IMP001/19</td>
<td>IMP</td>
<td>IMP</td>
</tr>
<tr>
<td>20-Feb-19</td>
<td>10:00-13:00</td>
<td>Fe 8 MeV</td>
<td>IMP001/19</td>
<td>IMP</td>
<td>IMP</td>
</tr>
<tr>
<td>21-Feb-19</td>
<td>10:00-13:00</td>
<td>Fe 8 MeV</td>
<td>IMP001/19</td>
<td>IMP</td>
<td>IMP</td>
</tr>
<tr>
<td>22-Feb-19</td>
<td>10:00-13:00</td>
<td>Fe 8 MeV</td>
<td>IMP001/19</td>
<td>IMP</td>
<td>IMP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Night Shift</th>
<th>Run</th>
<th>Beam</th>
<th>Experiment code</th>
<th>Beamline</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-Feb-19</td>
<td>17:00-20:00</td>
<td>Br 40 MeV</td>
<td>IMP001/19</td>
<td>IMP</td>
<td>IMP</td>
</tr>
<tr>
<td>19-Feb-19</td>
<td>17:00-20:00</td>
<td>H 2 MeV</td>
<td>IMP001/19</td>
<td>IMP</td>
<td>IMP</td>
</tr>
<tr>
<td>20-Feb-19</td>
<td>17:00-20:00</td>
<td>Fe 4 MeV</td>
<td>IMP001/19</td>
<td>IMP</td>
<td>IMP</td>
</tr>
<tr>
<td>21-Feb-19</td>
<td>17:00-20:00</td>
<td>Fe 4 MeV</td>
<td>IMP001/19</td>
<td>IMP</td>
<td>IMP</td>
</tr>
<tr>
<td>22-Feb-19</td>
<td>17:00-20:00</td>
<td>Fe 4 MeV</td>
<td>IMP001/19</td>
<td>IMP</td>
<td>IMP</td>
</tr>
</tbody>
</table>

Proposals:

- **IuB 001/19** Mramos: Searching for superconductivity in heavily boron-doped diamond
- **IMP 001/19** MDY: Fe-ion irradiation to emulate neutronic damage on Fe5Cr
- **STD 001/19** RPC: Oxides for photovoltaic solar cells
- **STD 002/19** MDY: Study of the effects produced in boron-doped diamond implanted
- **STD 003/19** MDY: RBS characterization of MoOx and MoTe2 obtained by isothermal closed space vapor
- **STD 004/19** MRB: Microstructural characterization of alloys irradiated under strain at high temperature
- **STD 005/19** MDY: Teaching practices of the Master "Materiales Avanzados"
- **STD 006/19** MDY: Commissioning to test the new acquisition software to work in IuB
- **STD 007/19** MRB: High-temperature RBS for carbon quantification in self-assembled monolayers of alkanethiols
- **STD 008/19** MDY: High-energy RBS for carbon quantification in self-assembled monolayers of alkanethiols
- **STD 009/19** MDY: Estudiar la densidad máxima de iones de B en la línea STD
- **STD 010/19** MDY: Estudiar la densidad máxima de iones de B en la línea STD
- **STD 011/19** MDY: Fe-ion irradiation to emulate neutronic damage on Fe5Cr
- **STD 012/19** MDY: High-temperature RBS for carbon quantification in self-assembled monolayers of alkanethiols
- **STD 013/19** MDY: RBS characterization of MoOx and MoTe2 obtained by isothermal closed space vapor
- **STD 014/19** MDY: Microstructural characterization of alloys irradiated under strain at high temperature

Cutoff score in the present beamtime period was 19 (over 36)